LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

P.G. DEGREE EXAMINATION – **COMMON PAPER**

THIRD SEMESTER - NOVEMBER 2007

MT 3925 - MATHEMATICAL SOCIAL SCIENCES

AB 29

Date: 03/11/2007 Time: 9:00 - 12:00 AM Dept. No.

Max.: 100 Marks

ANSWER ALL QUESTIONS.

I. (a) What is Social Science research? What are the purposes of Social Science research?

(or)

(b) Explain the general qualities of a good researcher.

(5 marks)

(c) Discuss the utilities of social science research.

(or)

- (d) Define the term 'hypothesis'. Explain the various types and the sources of hypothesis. (15 marks)
- II. (a) Find the bonds in the following graph.

(b) Explain Chinese postman problem with an example.

(5 marks)

- (c) Define the following terms each with an example.
 - (i) Path (ii) Weighted graph (iii) Edge cut (iv) Cut vertex (v) Cut edge. (15 marks)

(or)

- (d) (i) Define adjacency matrix and incidence matrix.
 - (ii) Find the adjacency matrix and incidence matrix for the following graph

(iii) Define Hamiltonian graph with an example.

(4 + 8 + 3 marks)

III. (a) Write brief notes on the types of sampling.

(or)

(b) Certain crosses of pea gave 5321 yellow and 1804 green seeds. The expectation is 25 percent of green seeds on a Mendelian hypothesis. Can the divergence from the expected value have arisen from the fluctuation of simple sampling only? (5 marks)

(c)	\mathbf{C}	alculate	the standard	deviation	of the	follow	ing two	series	Which	shows	greater	deviation?
	~		400					•	2 40	• • •		

				(or)						
Series B	83	87	93	109	124	126	126	101	102	108
Series A	192	288	236	229	184	260	348	291	330	243

(d) In a random sample of 500 persons in a town, 200 are found to be consumers of cheese. In a sample of 400 from another sample B, 200 are found to be consumers of cheese. Does the data reveal that a significant difference between A and B as far as the proportion of cheese consumers is concerned?

(15 marks)

IV. (a) Define general transportation problem.

(or)

- (b) What are the rules to be followed for the construction of a network? (5 marks)
- (c) The manager of an oil refinery must decide on the optimum mix of two possible blending processes of which the input and output production runs are as follows:

Process	In	put	Output			
	Crude A	Crude B	Gasoline X	Gasoline Y		
1	6	4	6	9		
2	5	6	5	5		

The maximum amounts available of crudes A and B are 250 units and 200 units respectively. Market demand shows that at least 150 units of gasoline X and 130 units of gasoline Y must be produced. The profits per production run from process 1 and process 2 are Rs.4 and Rs.5 respectively. Formulate the problem mathematically for maximizing the profit and solve it graphically.

(or

- (d) Solve the following linear programming problem by simplex method. Maximize z = 3x + 2y subject to constraints $x + y \le 4$, $x y \le 2$, and $x \ge 0$, $y \ge 0$. (15 marks)
- V. (a) Solve the following assignment problem.

	E	F	G	Н
A	18	26	17	11
В	13	28	14	26
C	38	19	18	15
D	19	26	24	10

(or)

(b) Explain briefly synaptic Connection Matrices.

(5 marks)

- (c) (i) Describe FAMs as mappings.
 - (ii) Define Fuzzy Hebb Matrix.
 - (iii) Construct a fuzzy Hebb matrix M given the input A = (.3 .4 .8 1) recalled fit vector B = (.2 .6 .5) upon max-min composition: $A_oM = B$. (5 + 4 + 6 marks)

(or)

(d) Obtain Initial Basic Feasible Solution of the transportation problem using all three methods and optimize the solution using the best starting solution by MODI method.

	D_1	D_2	D_3	D_4	Supply	
S_1	3	7	6	4	5	
S_2	2	4	3	2	2	
S_3	4	3	8	5	3	
Demand	3	3	2	2		(15 marks)
